

tanktwo.com

TBOS Software Architecture
Where (and How) the Magic Happens

Our software-defined battery (SDB) solutions supported by the Tanktwo

Battery Operating System (TBOS) offer a range of battery management

capabilities that aren’t available through any existing battery solution.

This white paper delves into the inner workings of TBOS to show how the

various functions come together to deliver an innovative battery

architecture that can overcome the limits of today’s battery solutions to

make electrification sustainable and profitable.

tanktwo.com

https://tanktwo.com/blog/software-defined-battery-systems-accelerate-electrification
https://tanktwo.com/blog/software-defined-battery-systems-accelerate-electrification
https://tanktwo.com/blog/volta-annual-battery-report-2022

The Four Key Components of TBOS
TBOS is an intricate system connecting software with hardware (i.e.,

battery cells) and involves four main components:

T-Blocks

A T-Block is a physical unit consisting of cells in a predetermined

arrangement — it’s the basic building block of a typical TBOS-driven

battery system. It consists of the following:

• Electrochemical cells of any age and chemistry mix.

• Hardware that controls the cells using predetermined logic.

• Hardware for monitoring the cells and collecting telemetry.

• Software to control the hardware via a TCP/IP network.

TBOS Control Unit

A computer in the TBOS control unit communicates with other

components via a TCP/IP network to monitor and control the battery

system. The control unit performs functions including:

• Detect T-Blocks in the system.

• Provide a control interface for operators to interact with the system.

• Collect and analyze telemetry from T-Blocks.

tanktwo.com

TCP/IP Network

The framework provides communication protocols to transmit data over

the internet. In a TBOS-driven battery system, it performs the following

functions:

• Hosts the DHCP server to assign IP addresses for all devices in the TBOS

system.

• Provide connectivity between T-Blocks and the control unit.

• Connect the battery solution to external networks for system control.

User Devices

A TBOS-driven battery system can connect with any number of user

devices (or none at all) so operators can interact with it in real-time by:

• Connecting to the graphic user interface (UI) in the control unit.

• Visualizing telemetry data.

• Offering a UI for system control and monitoring.

tanktwo.com

Software components within the T-Blocks and control unit power TBOS’s

innovative capabilities. Here’s a closer look at these two components:

T-Blocks
The software component in a T-Block acts as an intermediary between the

cells and the control unit. It allows the system to monitor the state of

health (SoH) and assert granular control over each cell to achieve the many

features unique to SDB systems.

tanktwo.com

https://tanktwo.com/s/Tanktwo-Overview.pdf

1. TBOS Management Unit (TMU)

The TMU is the “brain” of each T-Block. It consists of multiple software

components, typically implemented on top of Linux OS. Each T-Block

comes with two identical TMUs for redundancy and reliability.

2. Main Loop

The main loop is the high-level logic that makes the battery system work

— then rinse and repeat.

Main Loop Component 1: TBOS Algorithm

The TBOS algorithm is the control logic that identifies cells and T-Blocks

using non-volatile memory (or EEPROMs). It reads cell telemetry, performs

cell selection routines, monitors cell safety, and controls cell field effect

transistors (FETs), master FETs, and the current limiter. Additionally, it

stores the system state with cell telemetry and executes the desired

charging and discharging voltages using information from the cache.

The TBOS algorithm has four elements:

• TBOS API uses the cache to transmit data between the algorithm and

the REST server.

• The TBOS cell management feature maintains the logical structure,

allowing the software to work with any hardware (i.e., battery packs.)

• TBOS drivers function as an abstraction layer for sensors, allowing

builders to implement TBOS on any hardware.

• TBOS config defines connected peripherals and settings for specific

hardware.

tanktwo.com

The TMU monitors cell and system health in the standby state. Once it

receives commands from the system controller, it executes the algorithm

and switches to a charging or discharging state.

Charging starts with configuration imports to define the operating

conditions for the algorithm. Then, the software performs a verification

loop to ensure the measured charging voltage matches the predefined

value.

The charging algorithm controls cell selection and monitoring. Cell

selection is the outer loop of the algorithm and continues to operate until

a stop command is issued or a critical exception occurs. Cell monitoring

occurs in the inner loop, and continues until the charging cycle times out

or an exception occurs. When the monitoring loop breaks, the algorithm

determines whether the software should select new cells or stop charging.

Like the charging algorithm, the discharging algorithm controls cell

selection and monitoring. The process starts by ensuring all cells are

usable and within the safe operating window. The algorithm then sorts and

adds cells to the string. Next, it determines the maximum power that can

be transferred to or from each string based on each cell’s internal

resistance, string length, and desired voltage.

tanktwo.com

Main Loop Component 2: Beacon

The beacon runs parallel to the TBOS algorithm and sends universal data

protocol (UDP) broadcast packets to the local network to announce the

TMU’s ID, IP address, and state. The control unit uses this information to

detect usable TMUs in the network.

tanktwo.com

Main Loop Component 3: TMU Redundancy

The TMU redundancy software runs parallel to the TBOS algorithm. It

manages the two parallel and identical TMUs inside each T-Block. It

communicates via serial and TCP/IP with the TMUs, determines the

controlling unit, monitors the TMU in control, and ensures safe switchover

if the controlling unit experiences an issue.

3. Cache

The cache is an information exchange service. It allows software

components running in parallel threads to share data. The one in TBOS

stores settings and hardware reservations using Redis, an in-memory data

store that supports various abstract data structures.

tanktwo.com

Telemetry data is first stored in the cache and then transferred to the

control unit’s database (which could cause the cell measurement displayed

through the control unit UI to have a theoretical delay of up to 12

seconds.)

4. REST Server

This HTTP server uses the cache to relay telemetry and commands

between T-Blocks and the TMU algorithms.

5. FET control

Our system uses gallium nitride (GaN) metal oxide semiconductor FET, a

critical component in the Dynamic Current Routing Matrix (DycromaxTM)

that supports TBOS’s unique features like variable output voltage and

yellow flagging.

6. Cell Sensors

These measurement instruments collect telemetry from the

electrochemical cells, including cell temperature, cell voltage, string

current, and string voltage.

tanktwo.com

http://www.tanktwo.com/blog/dycromax-architecture

7. Current Limiter

This component is essential for constant voltage charging — a unique

TBOS capability. The hardware feedback loop measures string current and

limits it to the desired level. It also includes over-temperature protection

for the current-limiting semiconductors.

The TBOS algorithm controls the digital-to-analog converter (DAC), which

includes a proportional integration differential (PID) loop to predict the

current limiter’s dissipated power. When the temperature in the

semiconductor increases, the software PID loop reduces the dissipated

power before the hardware’s one-time programming (OTP) circuit disables

the current flow completely to protect the cells from overheating.

8. Block and Cell EEPROM

The EEPROMs in T-Blocks and cells store unique identifiers, which can be

read by the TBOS algorithm and included in the collected telemetry to

make all measurements traceable.

The memory can also include device-specific settings and usage limits for

the TBOS algorithm to enforce specific rules. For example, we can use it as

a safety control to ensure that the device’s maximum current limit isn’t

surpassed, even if software components receive higher values via external

commands or software updates.

tanktwo.com

TBOS Control Unit
The control unit automatically detects all T-Blocks in the network, collects

telemetry, and stores the data in its database. The information contains

time series telemetry data and log information for debugging purposes.

The unit has a scanner that listens for broadcast messages from the

beacon in all T-Blocks. It controls the T-Blocks, e.g., by defining the

voltages and operation mode and issuing commands via the web user

interface. The message broker then relays the messages from the web user

interface to the command execution task.

Meanwhile, the task queue in the control unit fetches TBOS settings from

the TMU and telemetry from the TMU REST server endpoint, executes

commands on T-Blocks, and deletes old telemetry no longer required.

To create the redundancy required for maximum reliability, we put multiple

instances of the software into each system — all of which have the

command line to control the entire system. We also have an arbitrage

logic to ensure the integrity of the decision-making process in case there

are conflicting commands from different control units.

tanktwo.com

tanktwo.com

TBOS Software in Action
These use cases show how the components in the TBOS software

architecture work together.

System Wakeup

An external signal triggers the wake-up sequence in the TMUs and starts

the software components.

Step 1: Hierarchy and Redundancy

After the TMU loads the OS and starts the main loop process, the TMU

redundancy software kicks in to ensure that only one of the two TMUs in a

T-Block takes control of the unit. It runs a handshake sequence to confirm

that the two TMUs it connects with are in the same T-Block and that the

TCP/IP network extends to all T-Blocks in the system.

If the TMU redundancy software finds another TMU, the algorithm selects

the optimal TMU and allows it to take control. If it doesn’t detect a second

TMU, the first one will assume control. This process prevents two TMUs

from controlling the unit simultaneously.

tanktwo.com

Step 2: Cell Discovery

After gaining control of the T-Block, the TMU runs a discovery process.

Block and cell EEPROMs detect the type of hardware, and cell sensors

provide information on all available cells in the system. Then, the TMU

cache stores the resulting list of cells, including their state and location in

the system.

tanktwo.com

Step 3: T-Block Discovery

The control unit runs the scanner application, which listens to UDP

broadcast packets containing the TMU state and IP address. After

discovering an active TMU, scheduled tasks use the endpoint at the TMU

REST server to read the TMU state, settings, and telemetry. Then, they

store the values in the control unit’s database.

The web user interface fetches information from the database and

visualizes the state of the active T-Blocks via the control unit UI — allowing

the operator to set desired voltage levels for the selected T-Blocks and

control the system’s state using the user device(s).

tanktwo.com

System Charging and Discharging

An operator selects an operation mode in the user device’s graphic

interface, and the external command activates the system. (Alternatively, a

machine-to-machine interface using a REST API may send commands to

the control unit.)

The message broker in the control unit receives the commands and relays

them to the appropriate task in the task queue. Then, the command

execution task issues the commands to the selected T-Blocks via their TMU

REST server endpoints.

When managing system-level commands, the control unit runs an internal

logic to determine the system topology and match the desired voltage

levels. Let’s say, a system consists of 4 T-Blocks, 2 in series and 2 in parallel

(2S2P). When a user sets the system output voltage at 200V, the web user

interface assesses the system topology, dividing the desired output

voltage by the number of T-Blocks in series. The control unit then gives the

message broker a command to issue 100V output voltage for all T-Blocks

in the system.

The TMU gathers data from the cells using the cell sensors and stores this

data in the cache during charging and discharging. The control unit

queries the information, iterates through all the detected T-Blocks, and

stores the latest telemetry values in its database to automate processes

such as cell balancing, determining SoH, yellow-flagging, and more.

The web user interface then processes this data and visualizes it via the

user device — allowing the operator to make informed decisions and

adjust the system’s behaviors on the fly.

tanktwo.com

TL;DR
Software on top of a generic block of battery cells receives commands

from the control unit and makes them do very cool things that even

industry veterans deem impossible.

The control unit oversees all the activities within the system — it takes

commands from the user device, makes the calculations, and tells each T-

Block what to do. It also provides real-time data visualization through the

user device to support decision-making on a dime.

A TCP/IP network connects all these devices and gets everything to talk to

everything to make any battery nerd’s dreams come true.

But, of course, there are a lot of nuances. The software makes the magic

happen by allowing us to program individual battery cells to behave and

work together in ways that are out of reach for traditional battery systems

— providing features and capabilities that will make TBOS and SDBs the

backbone of any sustainable and profitable electrification solutions.

tanktwo.com

